

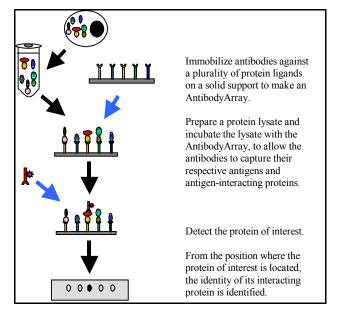
Li Starfish S.r.l. Via Silvio Pellico, 3 20061 Carugate (MI), Italy Tel. +39-02-92150794 Fax. +39-02-92157285 info@listarfish.it - www.listarfish.it

For AntibodyArrayTM

I. TABLE OF CONTENTS

I.	Intro	luction	2
II.	List o	f Components	3
III.	Addit	ional Materials required	3
IV.	Methe	ods	4
	A.	General considerations	. 4
	В.	Protocol 1 for screening protein-protein interaction	. 4
	C.	Protocol 2 for screening protein-protein interaction	4
	D.		
	E.	Preparation of Whole Cell Extracts	1
	F.	Preparation of Conjugated Antibody	6
V.	Trout	pleshooting	0
VI.	Sugge	stions for Additional Experiments	•
VII.	Refer		10
VIII	. Apper	ndix I. Antibody List by Positions	11
	A.	Signal Transduction AntibodyArray TM	11
	В.		10
	C.	Cell Cycle AntibodyArray TM	14
	D.	Trial AntibodyArray TM	15
IX.	Apper	ndix II. Products from Hypromatrix	16

AntibodyArrayTM Instruction Manual


I. INTRODUCTION

AntibodyArrayTMs contain hundreds of high quality antibodies against well-studied proteins. The antibodies are immobilized on a membrane, each at a predetermined position, and they retain their capabilities of recognizing and capturing antigens as well as antigenassociated proteins. The proteins captured on the array can then be detected by immunoblotting.

AntibodyArrayTM offers a high-throughput method for protein studies. It has many applications, including:

- 1. Examining protein expression profiles
- 2. Screening protein-protein interactions
- 3. Studying protein posttranslational modifications

AntibodyArrayTMs developed by Hypromatrix are especially suitable for screening protein-protein interactions and detecting protein tyrosine phosphorylation.

Overview of the method for screening protein-protein interactions using AntibodyArray $^{\rm TM}$

When AntibodyArrayTMs are used to detect protein-protein interactions or protein tyrosine phosphorylation under different conditions (e.g., different cell types under the same condition or the same cell type under different conditions), valuable information on changes in protein-protein interaction or protein tyrosine phosphorylation can be obtained.

For further information regarding these applications and other issues, please contact Hypromatrix.

AntibodyArrayTM Instruction Manual

II. LIST OF COMPONENTS

A. AntibodyArrayTM Store at 4 °C until use. Good for at least 3 months.

III. ADDITIONAL MATERIALS REQUIRED

The following materials are needed but not supplied: **A. Antibody to the protein of interest**

B. Reagents required for antibody-HRP conjugation

EZ-linkTM activated peroxidase and antibody labeling kit (Product # 31497ZZ) from Pierce (Rockford, IL).

C. Materials required for antibody biotinylation

EZ-linkTM Sulfo-NHS-LC-Biotinylation kit (Product # 21430ZZ) from Pierce (Rockford, IL).

D. Solutions:

1. Blocking solution:

5% dry milk in TBST (150 mM NaCl, 25 mM Tris, 0.05% Tween-20, pH 7.5).

2. Extraction solution:

Triton Extraction Solution: 15 mM Tris pH 7.5, 120 mM NaCl, 25 mM KCl, 2 mM EGTA, 2 mM EDTA, 0.1 mM DTT, 0.5% triton X-100, 10 μ g/ml leupeptin, 0.5 mM PMSF.

RIPA buffer: 150 mM NaCl, 1.0% NP-40, 0.5% DOC, 0.1% SDS, 50 mM Tris (pH8.0).

3. Washing buffer:

TBST (150 mM NaCl, 25 mM Tris, 0.05% Tween-20, pH 7.5).

E. Peroxidase substrate:

1. ECLTM Western blotting detection reagents from Amersham Pharmacia Biotech.

2. NENTM Western Blot Plus from NENTM Life Science Products.

IV. METHODS

A. General considerations

- Before using AntibodyArrayTM, tests should be done to get information on the quality of the antibody against the protein of interest. The HRP-conjugated antibody should work well in Western blotting and the sensitivity should be comparable to that of unconjugated antibodies.
- 2. The extraction condition should be optimized to ensure that the protein of interest and its potential interacting proteins are extracted as much as possible from cells and their interactions should not be disturbed.
- 3. Protein-protein interactions detected by AntibodyArrayTM should be further confirmed by other methods, such as co-immunoprecipitation and *in vitro* binding assay.

B. Protocol 1 for screening protein-protein interactions

- 1. Incubate AntibodyArrayTM in blocking solution for at least 1 hour at room temperature with slow shaking. The preferred blocking solution is 5% dry milk in TBST (150 mM NaCl, 25 mM Tris, 0.05% Tween-20, pH 7.5).
- 2. Incubate AntibodyArrayTM with a protein sample (e.g., whole cell extracts) for 2 hours at room temperature with slow shaking.
- 3. Wash AntibodyArrayTM with TBST, 3 x 15 minutes.
- 4. Incubate the AntibodyArrayTM with HRP-conjugated antibody against the protein of interest in TBST for 2 hours at room temperature.
- 5. Wash AntibodyArrayTM with TBST, 3 x 15 minutes.
- 6. Apply peroxidase substrate and expose to X-ray film.

Note:

- 1. When the antibodies against the protein of interest are not available, the protein of interest can be expressed as a recombinant fusion protein with a tag, which can be detected by available antibodies. Such tags include but are not limited to His, Myc tag, or GST and green fluorescent protein.
- 2. Biotinylated primary antibodies may be used. In this case, after incubation with the biotinylated antibody and wash (as in steps 4 and 5), incubate the array with HRP-conjugated avidin for 30-60 minutes, then wash and apply peroxidase substrate.
- 3. Affinity purified antibodies are recommended. The suggested concentration is 1.5-10 μ g/ml for high affinity antibodies or 10-50 μ g/ml for lower affinity antibodies.
- 4. Multiple sites may have positive signal, which suggests that several proteins interact with the protein of interest. These interactions may be direct or indirect, e.g., through a third protein.

C. Protocol 2 for screening protein-protein interactions

In this protocol, the potential interacting proteins and the protein of interest are applied to the array sequentially. That is, the cell lysate (containing potential interacting proteins) is incubated first with AntibodyArrayTM, and the protein of interest, e.g., as a recombinant protein, is subsequently applied to the array for interactions to occur.

AntibodyArrayTM Instruction Manual

- 1. Incubate AntibodyArrayTM with blocking solution for at least 1 hour at room temperature with slow shaking. The preferred blocking solution is 5% dry milk in TBST (150 mM NaCl, 25 mM Tris, 0.05% Tween-20, pH 7.5).
- 2. Incubate AntibodyArrayTM with a protein sample (e.g., whole cell extracts, nuclear extracts) for 2 hours at room temperature with slow shaking.
- 3. Wash AntibodyArrayTM with TBST, 3×15 minutes.
- 4. Apply the protein of interest, e.g., as a recombinant protein, to the array and incubate for 1-2 hours to allow the interactions to occur.
- 5. Wash with TBST, 3 x 15 minutes.
- 6. Incubate the AntibodyArrayTM with HRP-conjugated antibody of interest in TBST for 2 hours at room temperature.
- 7. Wash AntibodyArrayTM with TBST, 3×15 minutes.
- 8. Apply peroxidase substrate and expose to X-ray film.

Note:

- 1. The protein of interest can be expressed in the form of a recombinant protein, such as recombinant GST fusion protein, His tagged protein or GFP fusion proteins. The antibody against the tag (GST, His or GFP) can then be used.
- The following conjugated antibodies are available from Hypromatrix: HRP conjugated anti-His tag antibody HRP conjugated anti-GST antibody HRP conjugated anti-GFP antibody HRP conjugated anti-c-Myc tag antibody Biotinylated anti-His tag antibody Biotinylated anti-GST antibody

D. Protocol for screening protein tyrosine phosphorylation

- 1. Incubate AntibodyArrayTM with blocking solution for 1 hour at room temperature with slow shaking. The preferred blocking solution is 5% dry milk in TBST (150 mM NaCl, 25 mM Tris, 0.05% Tween-20, pH 7.5).
- 2. Incubate AntibodyArrayTM with a protein sample (e.g., whole cell extracts or nuclear extracts) for 2 hours at room temperature with slow shaking.
- 3. Wash AntibodyArrayTM with TBST, 3 x 15 minutes.
- 4. Incubate the AntibodyArrayTM with HRP- conjugated anti-phosphotyrosine antibody in TBST for 2 hours at room temperature.
- 5. Wash AntibodyArrayTM with TBST, 3 x 15 minutes.
- 6. Apply peroxidase substrate and expose to X-ray film.

Note:

- 1. Protein Ser/Thr phosphorylation can be similarly screened by using phospho-Ser/Thr specific antibodies.
- 2. When screening protein tyrosine phosphorylation HRP-conjugated antiphosphotyrosine antibodies are available from Hypromatrix.
- 3. The change in protein tyrosine phosphorylation under two different conditions can be compared.

E. Preparation of whole cell extracts

Care should be taken to make sure that the protein of interest and its potential interacting proteins are extracted as much as possible from cells. For many proteins, such as cy-toskeletal proteins, detergents have to be used to solublize them.

For protein-protein interaction studies, mild condition should be used to maintain native protein-protein interactions.

The following is a protocol that can be used to extract most proteins from cultured mammalian cells and maintain protein-protein interactions.

- 1. Grow cells for two days into fresh confluence in 100 mm petri dish.
- 2. Remove the cell culture media and wash the cells twice with ice cold Tris saline (50 mM Tris pH 7.5, 150 mM NaCl, 1.5 mM PMSF).
- Add 1 ml Triton Extraction Solution to cell monolayer and incubate at 4°C for 30 minutes. Triton Extraction Solution contains 15 mM Tris pH 7.5, 120 mM NaCl, 25 mM KCl, 2 mM EGTA, 2 mM EDTA, 0.1 mM DTT, 0.5% triton X-100, 10 μg/ml leupeptin, 0.5 mM PMSF.
- Pellet cellular debris by centrifugation at maximum speed (14,000rpm) in a desktop centrifuge at 4°C for 15 minutes. Transfer and collect supernatant for AntibodyArrayTM assay.
- 5. Before assay, dilute the protein extract in 5 ml extraction solution containing 1% BSA or 1% dry milk, final concentration should be between 0.5 μ g/ μ l and 5 μ g/ μ l.

Note

- 1. Radio immunoprecipitation assay buffer (RIPA buffer) can also be used to prepare cell extract for protein-protein interaction screening.
- 2. For screening protein tyrosine phosphorylation, denaturing buffer can be used. For example, cells can be lysed in 0.6% SDS in PBS and then dilute SDS out with 4 volume of 0.5% Triton in PBS.

F. Preparation of Conjugated Antibody:

Because AntibodyArrayTMs contain antibodies from several sources, including mouse, rat, rabbit and goat, enzyme-conjugated secondary antibody cannot be used. Enzyme-conjugated or biotinylated primary antibodies have to be used.

HRP Conjugation:

- 1. Dissolve 1 mg HRP in 0.25 ml of water.
- 2. Add HRP to 0.1 ml of freshly prepared sodium periodate solution and incubate at room temperature for 20 minutes.Sodium Periodate solution: 0.1 M sodium periodate in 10 mM sodium phosphate (pH7.0).

Sodium Periodate solution: 0.1 M sodium periodate in 10 mM sodium phosphate (pH7.0).

- 3. Dialyze the above solution overnight at 4°C in 1 mM sodium acetate (pH 4.0).
- Add the dialyzed HRP to 0.1 ml antibody solution and incubate for 2 hours at room temperature. Antibody solution: 1 mg/0.1 ml in 20 mM carbonate buffer (pH9.5).
- 5. Add 20 µl of sodium borohydride (4 mg/ml in water) and incubate at 4°C for 2 hour
- 6. Dialyze against PBS.

Antibody Biotinylation

1. Add 20 μl of N-hydroxy succinimide biotin to 100 μl antibody and incubate at room temperature for 4 hours.

N-hydroxysuccinide biotin: 10 mg/ml in dimethyl sulfoxide.

Antibody solution: 1 mg/ml in sodium borate buffer (0.1 M, pH 8.8).

- 2. Add 5 µl of 1 M NH₄Cl and incubate for 10 minutes at room temperature.
- 3. Dialyze the antibody solution against PBS.

Note

- 1. It is important that before using conjugated primary antibodies in AntibodyArray assay, test them in regular Western blotting assay. The conjugated antibody should work well in Western blotting and the sensitivity should be comparable to that of unconjugated antibodies.
- 2. Other methods can be used. For further information on antibody conjugation, please see Harlow and Lane, 1988, Antibodies, a laboratory manual. Cold Spring Harbor Laboratory Press.
- 3. Kits from several commercial sources can be used for antibody HRP conjugation and biotinylation.

EZ-link $^{\rm TM}\,$ activated peroxidase and antibody labeling kit (Product # 31497ZZ) from Pierce.

EZ-linkTM Sulfo-NHS-LC-Biotinylation kit (Product # 21430ZZ) from Pierce.

7

V. TROUBLESHOOTING

If the results you obtained is different from what you have expected, use the following guide for troubleshooting. For further help, please contact Hypromatrix.

Observations	Possible Causes	Solutions
No signal	The protein of interest and its interacting pro- teins are not extracted.	Vary the extraction conditions. Western blot may be performed with the extract to see whether the protein of interest is in the extract.
	Primary Antibody is not sensitive enough.	Use a antibody with higher affinity. Increase the antigen concentration by increasing the amount of protein extract may also partially overcome this problem.
	factory	Before using conjugated primary antibodies in AntibodyArray assay, test them in regular West- ern blot assay. The conjugated antibody should work well in Western blotting and the sensitivity should be comparable to that of unconjugated antibodies.
Signal is weak	Dissociation of interact- ing proteins during incu- bation.	Decrease the incubation time. Wash for less time.
Too much background	Blocking is not complete	Block the array overnight.
	Antibodies contain reac- tivities to some compo- nents in blocking re- agents	Pre-incubate the antibodies with the blocking reagents. Add blocking reagents in Washing so- lution.
Too many posi- tive spots	Antibody used contains non-specific activities, such as reactivities against all mouse or rab- bit antibodies.	Further clean the antibody. If the antibody is not affinity purified, affinity-purify it.

AntibodyArrayTM Instruction Manual

VI. SUGGESTIONS FOR ADDITIONAL EXPERIMENTS

Hypromatrix suggests the following steps to confirm the results obtained with the first screening.

A: Record the positive spots

Carefully analyze the results. Sometimes, a weak positive spot may be real.

B: Repeat the experiment

The positive result from the initial screening should be repeated and confirmed under different conditions. A convenient and economical way to do this is to repeat the experiment using Custom AntibodyArrayTMs that contain all the antibodies giving positive results. Such customized arrays can be ordered from Hypromatrix.

At least two conditions should be used:

- 1. Repeat the experiment under the exact condition used in the initial screening.
- 2. Perform the assay without protein lysates. This will eliminate false positives that result from direct binding between HRP-conjugated detecting antibodies and membrane-bound capturing antibodies.

Other conditions may also be desired. For example, assays can be performed with protein lysates prepared under conditions that the expected interactions will be unlikely to occur. Such conditions include but are not limited to using protein lysates that does not have the protein of interest; preparing lysates under denaturing conditions that disrupt protein-protein interactions. This will ensure that positive signal is not due to direct binding of the same protein by both the capture antibodies and the detecting antibodies.

Carefully compare the results obtained from each condition. Only the antibodies that give positive signals under correct conditions but not under control conditions should be confirmed in additional experiments. Abandon those spots that give signals under control conditions.

C: Confirm the positive results by co-immunoprecipitation.

The results should also be confirmed by other methods, such as immunoprecipitation and *in vitro* protein binding assays. To do this, select the antibodies that give most consistent and reliable results, and perform co-immunoprecipitations with those antibodies. We suggest that individual antibodies used in AntibodyArraysTM from Hypromatrix be used first; then additional antibodies from other sources are used for confirmation.

In many situations AntibodyArrayTM assay is more sensitive than co-immunoprecipitation. This is partially due to the fact that antibodies are immobilized at high concentrations on the membrane; and the high antibody density significantly increases the binding of antigens. In addition, because both capturing and detecting antibodies have to bind the same protein complex in order to produce a signal, the chance for false positive result is lower than immunoassays that only require one antibody binding.

Therefore, when a novel interaction identified by AntibodyArray assays is unable to be demonstrated by standard co-immunoprecipitation, it is still quite likely that the interaction is a real one.

D: Additional experiments that may be used for confirmation.

These include in vitro binding assays with recombinant proteins and double immunostaining that can reveal cellular co-localizations of two interacting proteins. In vitro binding is particularly helpful because the assay can tell whether the protein-protein

Hypromatrix, Inc.

interaction demonstrated in AntibodyArrayTM and co-immunoprecipitation is direct or indirect binding. In addition, some protein interactions that are difficult to demonstrate by co-immunoprecipitation can be revealed by *in vitro* bindings, particularly when right domains of the involved proteins are used in the assays.

VII. REFERENCES

Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. *Nature* 20; 340(6230):245-6.

Ge, H. (2000) UPA, a universal protein array system for quantitative detection of proteinprotein, protein-DNA, protein-RNA and protein-ligand interactions. *Nucleic Acids Research*, Vol. 28:e3.

Harlow and Lane, 1988, Antibodies, a laboratory manual. Cold Spring Harbor Laboratory Press.

Wang, Y., Wu, T.R., Cai, S., Welte, T., and Chin, Y.E. (2000) Stat1 as a component of tumor necrosis factor alpha receptor 1-TRADD signaling complex to inhibit NF-kappaB activation. *Mol. Cell Biol.* 20(13), 4505-12.

AntibodyArrayTM Instruction Manual

APPENDIX I. ANTIBODY LIST BY POSITIONS

A. Signal Transduction AntibodyArray[™] Updated: 3-20-2003

	U	paa	tea:	3-2	0-20	03														
٦	Ankyrin	IA	BLCAM	CBP	Clathrin	DFF45 /ICAD	EphB1	FHIT	GRK 2	ING1-p33	c-Kit	Mos	nip1	p57 (Kip2)	56-OS4	Rap2	L-Selectin	SRF	Thyroid R al	Vav
_	Bin 1	Bcl-xS/L	Pan-Cadherin	c-Cbl	CIDE-B	Desmoglein	EphA4	FGFR4	GRB14	IL4R a	KAP	6-dMM	NIK	p55 CDC	pp120	Rap1	E-selectin	Yes	TGFb R2	VASP
т	Amphiphysin	Bcl-w	VE-Cadherin	r-catenin	CIDE-A	DCC	EphA1	FGFR3	GRB7	П. 3	p-c-Jun	MMp-3	Nibrin	p53	PP1,2A,2B,PPX	Ran BP-1	Sam68	c-Src	TGFb R1	Tyk2
IJ	ALK	Bcl-2	N-Cadherin	b-Catenin	C-IAP2	DAXX	Elongin A	FGFR2	GRB2	IL 2 gamma	c-Jun	MGMT	Ikappa B kinase b	p45 skp2	Polo-like kinase	RalA	Rsk-1	Lyn	TDAG51	Tuberin
Ŀ.	Akt 1/2	Bag-1	E-Cadherin	a-Catenin	C-IAP1	cytochrome	Egr-3	FGFR1	Granzyme	IL 2 R, beta	p-JNK1,2,3	Met	Ikappa B kinase a	p-p38	PKC α, β, χ	RAIDD	Ronalpha	Lck	TCR beta	TTK
ш	AIF	NBK	C/EBP beta	Caspase 10	Chk	Cyclin H	Egr-2	FAST	gp130	IL 2 R alpha	JNK1,2,3	Menin	Ikappa B-e	p38 MAPK	PI3kina se	p-c-Raf-1	RIP	fyn	TCR alpha	TSG101
٥	ACINUS-p23	BOK	Btk	Caspase9	Cdk6	Cyclin E	Egr-1	FasL	G-CSF R	IL 1 RI	Jak3	MEKK2	Ikappa B-r	p35	Phospholipase D	c-Raf-1	RICK	c-Fgr	TANK	TrkA, B, C
U	ACINUS	Bax	Brm	Caspase8	Cdk4	Cyclin D3	p-EGFR	Fas	GATA-3	IFN-g R a	Jak2	MEKKI	Ikappa B-b	p27	Phospholipase Cr	Rad52	Rho A	Blk	Syntaxin6	TRAIL
۵	c-Abl	Bak	Brk	Caspase7	Cdk2	Cyclin B	EGFR	FAK	GATA-2	IFN-a R a	Jak1	MEKI	p-Ikappa B-a	p21WAF1 / CIP1	PDGF Receptor b	Rad51	Ret	sp2	Syk	TRAF6
٨	14-3-3	Bad	BRCA2	Caspase6	Cdk1 / Cdc2	Cyclin A	E2F1	FAF-1	GATA-1	IEXs/I	ISGF3 gamma	MEF2	Ikappa B-a	p19Skp1	PDGF	RACKI	Rel B	sp1	SURVIVIN	TRAF5
	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20

Hypromatrix, Inc.

11

	¥	L	Ψ	z	0	۵.	σ	۲	S	F
٠	Annexin VI	ANT	Apafl	APC	ARC	ATF-2	p-ATF-2	AxI	B7-1	B7-2
2	McI-1	Bcl-3	Bcl-6	BID	Bim	BM28	BMX	BAPI	BARDI	BRCAI
3	HCAM	ICAM-1	PECAM-1	VCAM-1	CAS	Caspase1	Caspase2	Caspase3	Caspase4	Caspase5
4	CD 3 epsilon	CD27	CD28	CD30	CD40	CD45	Cdc6	Cdc25A	Cdc34	CDC42GAP
5	Clusterin	Connexin 32	Connexin 43	Cortactin	CPAN	CREB	CREM-1	Crk	Csk	CUL-1
9	VAIQ	DMBT1	DMC1	DcR1	DcR2	DR3	DR4	DR5	Dynamin	Dynamin II
7	eps8	erbB2	erbB3	erbB4	ERK1	ERK2	Estrogen R a	Ets-1/2	Ezrin	FADD
8	FLASH	FLIPs/1	Flt-3/2	Flt-4	c-Fos	Frizzled	GADD34	GADD45	GADD153	GAK
6	GSK-3 alpha	HDAC1	bhlg	Ne-dlg	hILP	Hrk	ISH	HSP-70	ICSBP	IPI
10	Insulin R b	Integrin-alphal	Integrin a 5	Integrin a V	Integrin b 1	Integrin b 3	IRAK	IRF1	IRF2	IRS-1
11	L1	IIBJ	LIFR	Mad-1	MAD2	Maspin	Max	MDA-7	MDM2	Mdr
12	Myc (c-Myc)	MyoD	NCK	I-HN	NF IGRP	NF2	NFATC	NF-kappa B 50	NF-kappa B 52	NF-kappa B p65
13	nip2	nip3	sons	SONI	SONn	Notch	Ntk	Nurr 1	Ob Receptor	p16
14	£9d	P73	p130Cas	p300	Patched	PAR-4	PARP	Pax-5	Paxillin	PCNA
15	PTEN	dLd-HS	BIIT	SH-PTP2	PYK2	Rab1A	Rab3	Rab5	Rab11	Rac1
16	RAR r	RXR a,b,r	Ras	Ras-GAP	Rb (p107)	Rb (p110)	Rb2 (130)	RBBP	Rbx1 & 2	c-Rel
17	P-Selectin	SHC	dIHS	Sik	SIVA	Smad (1/2/3)	Smad 4	SOCS-1	SODD	Sos1/2
18	STAM	Statl	p-Stat1	Stat2	Stat3	p-Stat3	Stat4	Stat5a	Stat5b	Stat6
19	TIA-1	TIAR	TNFR1	TNFR2	TOSO	TRADD	TRAF1	TRAF2	TRAF3	TRAF4
20	VDACI	VDR	VEGFRI	VEGFR2	THA	ΤW	XRCC4	IAA	ZAP70 Kinase	I-0Z

A. Signal Transduction AntibodyArray[™] (continued) Updated: 3-20-2003

B. Apoptosis AntibodyArray™ Updated: 6-19-2003

ed:	6-19	-2003	;	-								
	0	Bcl-2	Caspase4	CPAN	FAF-1	IEXs/I	Menin	nipl	RbP130 (Rb2)	TOSO	XRCC4	
	N	Bag-1	Caspase 3	Clusterin	FADD	Hrk	MEKK2	NIK	Rb (p110)	TNFR2	VHL	
	М	NBK	Caspase2	CIDE-B	Elongin A	ыце	MEKKI	Nibrin	Rb p107	TNFR1	VDACI	
	L	BOK	Caspase 1	CIDE-A	DR5	Ne-dig	MEKI	IKKb	RAIDD	TIAR	Tyk2	
	К	Bax	CAS	C-IAP2	DR4	hDLG	MEF2	IKKa	Rad52	TIA-1	Tuberin	
	ŗ	Bak	BRCA2	C-IAP1	DR3	Granzyme B	MDM2	Ikappa B-b	Rad51	TDAG51	TSG101	
	-	Bad	BRCAI	CD40	DcR2	GADD153	MDA-7	Ikappa B-a	PTEN	TANK	TrkA, B, C	
	Н	ARC	BARDI	CD30	DcR1 (TRID)	GADD45	Maspin	NF-kappa B p65	\$6-OS4	SURVIVIN	TRAIL	
	G	APC	BAPI	CD27	DMCI	GADD34	1191	NF-kappa B 52	PARP	Stat1	TRAF6	
	F	Apafi	Bim	Caspase10	DMBT1	FLIPs/I	p-JNK1,2,3	NF-kappa B 50	PAR-4	SODD	TRAF5	
	Е	ANT	BID	Caspase9	DIVA	FLASH	JNK1,2,3	NF2	P73	SIVA	TRAF4	
	D	Bin 1	McI-I	Caspa se8	DFF45/ICAD	FHIT	Jak3	NFIGRP	P63 (KET)	RIP	TRAF3	
	с	AIF	АІ	Caspase7	DCC	FAST	Jak2	NF-1	p53	RICK	TRAF2	
	в	ACINUS-p23	Bcl-xS/L	Caspase6	XXVQ	Fas Ligand	Jak1	Myc (c-Myc)	nip3	Rel (c-Rel)	TRAFI	
	v	ACINUS-L/S	Bcl-w	Caspase5	cytochrome C	Fas/CD95/ APO-1	ING 1-p33	MGMT	nip2	RBBP (RbAp46)	TRADD	
		1	2	3	4	2	9	٦	8	6	10	

12

Hypromatrix, Inc.

AntibodyArrayTM Instruction Manual

Hypromatrix, Inc.

AntibodyArrayTM Instruction Manual

C. Cell Cycle AntibodyArray™ Updated: 09-20-2003

A.	Trial AntibodyArray™
	Updated: 3-20-2003

- - -	ICAM-1 β-Catenin EGFR Egr-1 EphA1 erb2 (Neu)	FAK FGFR1 (Fig) FGFR2 (Bek) FIL-3/2 c-Fos gp130	IL 2 R α Insulin R β Integrin α V Integrin β 3 IRAK c-Jun	Pax-5 PDGF Receptor a Phospholipase Cy P13kinase P85 PKC pp120	c-Raf-1 RXR c., B, X Ras-GAP Rel B Rho A Smad1 (1/2/3)	Stat6 Syk TCR a VEGFR1 YY1 ZAP70 Kinase
C C	AxI E-Cadherin	Ets-1/2 Ezrin	HSP-70 IFN-a R α	p38 MAPK p130Cas	PYK2/CAK β Rab1A	Yes Stat5a
m	Akt 1/2	Estrogen R α	GSK-3 α	eNOS	PTP1B	Src
۷	14-3-3	2 ERK1	3 GRB7	4 c-Kit	5 PTP1 (SH)	6 fyn

ſ	Cdk4	E2F1	Mos	p45 skp2	Rb (p107)	XRCC4	
I	Cdk2	DMCI	MAD2	p35	Rad52	TTK	
Н	Cdk1/ Cdc2	Cyclin H	KAP	p27	Rad51	Stat3	
G	Cdc34	Cyclin E	ING1-p33	p21WAF1/CIP1	Polo-like kinase	p-Stat1	
F	Cdc25A	Cyclin D3	Ne-dig	p19Skp1	PCNA	Stat1	
Е	Cdc6	Cyclin B	glbH	p16	P73	Sam68	
D	Brm	Cyclin A	GAK	Nibrin	P63	Rbx1 & 2	
с	BRCA2	CUL-1	GADD153	Ikappa b,3	p57	RBBP	
в	BRCAI	Chk	GADD45	NF-kappa B, p65	p55 CDC	RbP130 (Rb2)	
¥	BM28	Cdk6	GADD34	NF-1	p53	Rb (p110)	
	1	2	3	4	5	9	

8

APPENDIX II. PRODUCTS FROM HYPROMATRIX, INC

- A. AntibodyArrayTMs:
 1. Signal Transduction AntibodyArrayTM Catalog Number HM3000
- 2. Apoptosis AntibodyArrayTM Catalog Number HM4000
- 3. Cell Cycle AntibodyArrayTM Catalog Number HM5000
- 4. Custom AntibodyArrayTM Catalog Number HM6000

B. Antibodies

1. HRP-conjugated antibodies

- a. anti-GST
- b. anti-GFP
- c. anti-6XHis
- d. anti-Myc-tag
- e. anti-phosphotyrosine
- f. HRP-avidin

and more...

2. Primary antibodies

Hypromatrix offers a variety of high quality antibodies. For a complete list of antibodies and their specificities, please visit our web site at www.hypromatrix.com

EZ-linkTM is a trademark of Pierce Chemical Company ECLTM is a trademark of Amersham Pharmacia Biotech. NENTM is a trademark of NENTM Life Science Products.